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Abstract

Various strong coupling theories of the one-component plasma have
successfully predicted the thermodynamic and structural properties by
separating the Coulomb potential into short- and long-ranged parts in ad hoc
ways. Moreover, it has been demonstrated that the density–density correlation
function in a mimic system with only short-ranged interactions resembles that
of the full Coulomb system, revealing that the van der Waals picture applies to
the strongly coupled Coulomb systems. Here we present a variational theory
forming the basis of the van der Waals picture. Our approach provides hybrid
formulations which combine both the liquid state theory and statistical field
theory; essential use is made of the coarse-grained system with only the long-
ranged part of Coulomb interactions as a reference system in introducing both
the lower bound variational principle and strong coupling expansion.

PACS numbers: 03.50.−z, 05.20.Jj, 61.20.Gy, 82.70.Dd

1. Introduction

The van der Waals picture [1–3] is a robust framework for liquids with nontrivial density
correlations. According to this treatment, the harshly repulsive interactions at short distances
determine the average relative arrangements of components, and slowly varying long-ranged
interactions play a minor role in the liquid structure. One of the well-known prescriptions for
the potential separation is the systematic Weeks–Chandler–Andersen (WCA) method [2, 3]
which has been successful for interaction potentials with minima such as the Lennard–Jones
potential.

The WCA separation, however, is not applicable to the Coulomb interaction potential with
neither minimum nor a characteristic length. A typical potential form due to the Coulomb
interaction between one-component charged particles is given by γ v(r) = γ (a/r), where
|r| = r , the coupling constant γ = β(ze)2/(4πεa) is defined by inverse thermal energy β,

1751-8113/09/082004+08$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/8/082004
mailto:frusawa.hiroshi@kochi-tech.ac.jp
http://stacks.iop.org/JPhysA/42/082004


J. Phys. A: Math. Theor. 42 (2009) 082004 Fast Track Communication

charge per particle ze, dielectric permittivity ε and a reference length a equal to the Wigner–
Seitz radius [4]: a = (3/4πρ)1/3 where the concentration of charged particles is given by
ρ = N/V with N being the total number of particles and V the system volume. A prototype of
the Coulomb systems is the one-component plasma (OCP) [4], a uniform system of point ions
in a neutralizing background, which we will consider here. This model can in fact be regarded
as a limiting case of real matter such as liquid metals, salt-free colloidal dispersions, and so on.
The long-range Coulombic nature of the OCP in the strong coupling (SC) regime satisfying
that γ � 1 leads to the Wigner crystallization with a large lattice constant comparable to
the wavelength of visible light, which is an underlying cause of photonic crystal formation
observed for salt-free colloidal dispersions [5].

When we separate the Coulomb potential γ v into short- and long-ranged parts, γ vS and
γ vL, with vL supposed to have a finite value at zero separation, we have had a choice, as short-
ranged contribution γ vS , to use a hard-core potential with an effective hard-core diameter, an
adjustable parameter in the SC regime [4]. In addition to the hard-core type division, there have
been other various ad hoc methods [4, 6–12] of the potential separation. In the random phase
approximation (RPA), the previous SC theories with various optimized forms of the long-
ranged potentials γ vL have provided the internal correlation energy in excellent agreement
with simulation results over a wide range of coupling constant γ [4, 6–11]. Moreover, it
has been recently demonstrated by the use of local molecular field (LMF) theory [7] that the
structures of the OCP are related to those of a mimic system with only short-ranged interactions
in an external field incorporating a mean-field average of the remaining long-ranged interaction
system: the density–density correlation function in the mimic system resembles that of the full
Coulomb system. The successful predictions of previous SC theories for both thermodynamic
and structural properties implies the efficiency of the Coulomb potential separation along the
van der Waals picture; however these treatments have not clarified both a criterion for the
division of Coulomb potential and a functional-integral form validating the RPA in the SC
regime.

In order to verify the van der Waals picture of the strongly coupled OCP, we must thus
face the following fundamental questions: (i) What theory forms the basis of separating into
two parts the Coulomb potential without characteristic length scales? (ii) Why is the RPA (or
the saddle-point approximation) validated so far in the weak coupling regime [13–15], relevant
even to the strongly coupled systems? Our main aim is to provide a solution to these problems
by developing a hybrid theory which combines both the liquid state theory and the statistical
field theory; essential use is made of both lower bound variational principle, other than the well-
known upper bound approach [3, 12] referred to as the thermodynamic perturbation theory,
and strong coupling expansion around the saddle-point which can actually be formulated via
the standard field-theoretic method, contrary to the statements in the literature [13–15]. In
the following, we first establish a variational principle to optimize the potential separation by
maximizing the lower bound of the free energy. Next we present a functional-integral form
to which the RPA is applicable in the SC regime. Our variational principle offers not only a
framework for addressing the above fundamental problems, but also an alternative to deriving
the lower bound of the internal correlation energy evaluated so far in various ways [4, 8–12,
16]. Finally we compare our result of potential separation with that of the LMF theory [7].

2. Outline of the lower bound approach

To answer the first question described in the introduction, we start with not the upper bound
due to the Gibbs–Bogoliubov inequality [3, 12], but the lower bound [3] of the true free energy
F {v} for the OCP with full Coulomb interactions. Taking the long-ranged potential vL as
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a reference system potential in the Coulomb separation of γ v = γ vS + γ vL, we have the
inequality for the lower bound L{vL;h} as a functional of both vL (or vS = v − vL) and the
pair correlation function h(r) of not a reference but a full Coulomb system [3]

L{vL;h}
N

= βF {vL}
N

+
γρ

2

∫
r

h(r)vS(r) � βF {v}
N

, (1)

where F {vL} is the free energy of a long-ranged interaction system,
∫

r
denotes the integral∫

dr. Evaluating the free energy F {vL} in the RPA, it will be shown that maximization of the
lower bound functional L with respect to vL yields

Lmax

N
≡ L{v∗

L;h}
N

= βF {−c/γ }
N

+
ρ

2

∫
r

h(r)[γ v(r) + c(r)]. (2)

This means that the optimum potentials, v∗
L and v∗

S , are

γ v∗
L = −c; γ v∗

S = γ v + c = csr , (3)

where c denotes the direct correlation function and csr corresponds to the so-called short-
ranged direct correlation function [17]. In other words, the long-range part γ v∗

L of the
Coulomb potential satisfies the Orstein–Zernike (OZ) integral equation [3]

h(r) = −γ v∗
L(r) − ρ

∫
r′

γ v∗
L(|r − r′|)h(r ′). (4)

Using diagrammatic analysis, the exact closure to the OZ equation is expressed as

g(r) = exp[−γ v(r) + γ vL(r) + h(r) − b(r)], (5)

where the radial distribution function g(r) is defined by g = 1 + h and the bridge function
b(r) denotes the negative of the sum of elementary diagrams [3].

The relations (1)–(3) state that the variational approach for the lower bound functional
L{vL;h} provides a first principle for separating the Coulomb potential. A question still
remains whether the real density correlations represented by h(r) are mimicked by the short-
ranged system with the interaction potential csr . Let Fsr = F {v} − F {−c/γ } and F {csr/γ },
respectively, the short-ranged contribution to the full free energy and the mimic free energy
associated with the short-ranged system. In the RPA of the long-ranged contribution, the
mimic free energy F {csr/γ } is identified with Fsr , giving

βF {csr/γ }
N

= βFsr

N
≈ ρ

2

∫
r

h(r)csr (r) (6)

in the approximation, βFsr ≈ Lmax − βF {vL}. Equation (6) leads to

2

N

δβF {csr/γ }
δcsr

= ρh(r), (7)

indicating that the mimic system with only the short-ranged interaction potential, γ v∗
S , can

reproduce the pair correlation function h(r) of the full Coulomb system in line with the van
der Waals picture.

3. Strong coupling approximation of the OCP

All of the discussions in the previous section have relied on the RPA, though the RPA has not
been verified in the SC regime: while previous field theories have formulated the RPA only in
the weak coupling regime γ � 1 [13–15], strong coupling theories have successfully used the
RPA without the field-theoretic justification [4, 8–11]. We then reveal below the underlying
functional-integral form behind the RPA in the SC regime.
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For later convenience, we introduce the free energy functional A{vL} including the self-
energy via the expression

βF {vL} = βA{vL} − γ vL(0)

2
ln〈en〉 = βA{vL} − γ vL(0)

2
N, (8)

with the bracket denoting the average as follows: 〈O〉 = TrO e−γU{vL}/Tr e−γU{vL}, where
Tr ≡ ∑∞

n=0(z
n/n!)

∫
r1···rn

, z the activity, and the total electrostatic interaction energy U{vL}
includes the self-energy of ions. In the last equality in equation (8), use has been made of the
relation: 〈en〉 = e〈n〉 = eN . The interaction energy γU{vL} is expressed as

γU{vL} = γ

2

∫
r1r2

δρ̂1vL(r12)δρ̂2, (9)

setting for abbreviation that δρ̂(r) = ρ̂(r) − ρ, ρ̂(r) = ∑
i δ(r − ri ), δρ̂1 = δρ̂(r1) and

r12 = |r1 −r2|. Along the Hubbard–Stratonovich transformation [13–15], we rewrite equation
(9) as

e−γU{vL} = 1

N

∫
φ

e−γ S0{φ}+γ
∫

r
iφ(r){ρ̂(r)−ρ}

S0{φ} = 1

2

∫
r1r2

φ1v
−1
L (r12)φ2

with N = ∫
φ

e−S0{φ}. Consequently, we obtain the functional-integral form of A{vL}:

e−βA{vL} = 1

N

∫
φ

exp(−γ S{φ})

γ S{φ} = γ S0{φ} + γρ

∫
r

iφ(r) − z

∫
r

eγ iφ(r).

(10)

Since the action γ S{φ} is proportional to the coupling constant γ , our functional-integral form
verifies that the perturbation expansion around the saddle-point satisfying that δS/δφ|φ=iφ∗ =
0 is allowed to use in the SC regime.

Before proceeding, let us compare the present action γ S{φ} with the previous one for the
weak coupling regime [15]: γ −1S ′{ψ} = γ −1S0{ψ}−ρ

∫
r

iψ(r)−z eγ vL(0)/2
∫

r
e−iψ(r) where

vL should be replaced by v and elimination of the self-energy is considered in the last exponent
on the right-hand side [15] other than our treatment in equation (8). The comparison indicates
that our statistical field theory has introduced a normalized field φ = −ψ/γ instead of the
standard potential field ψ . Our selection of potential variable is indispensable for picking up
inherent fluctuations from ψ whose variations multiplied by γ are amplified extremely in the
SC regime.

The saddle-point equation, given by δS/δφ|φ=iφ∗ = 0, reads

φ∗(r1) =
∫

r2

v∗
L(r12)[z e−γφ∗(r2) − ρ]. (11)

The prefactor γ appearing in the exponent leads to the exact solution in the SC limit: we obtain
that limγ→∞ φ∗ ≡ 0 and z = N/V = ρ; otherwise there are no self-consistent solutions,
because the above term, e−γφ∗

, goes to zero for φ > 0 and diverges for φ < 0 in the limit
γ → ∞. While equation (11) holds in the SC regime γ � 1, the expression is identified with
the Poisson–Boltzmann equation valid in the weak coupling regime γ � 1 [15] if φ∗ and v∗

L

are replaced by ψ/γ and the full potential v, respectively. The availability of the saddle-point
equation in both the strong and weak coupling regimes seems to be one of the reasons for
the success so far of the RPA, or the saddle-point approximation, in the intermediate regime
[4, 6–11].
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Let us write φ = iφ∗ + χ/γ to expand S{φ} around the saddle point φ∗ = 0. In the RPA,
we find from equations (8)–(10) that the long-ranged contribution F {vL} to the free energy is
of the form

βF {vL} = γ S{iφ∗ = 0} − ln
1

N

∫
χ

exp[−�S{χ}] − Nγ

2
v(0), (12)

where the first term γ S{0} on the right-hand side corresponds to the mean-field free energy
including self-interaction energy, and the quadratic action �S{χ} in the second term is
associated with the expansion for the last term on the right-hand side of equation (10) such
that eγ iφ = e−γφ∗+iχ = e−γφ∗

(1 + iχ − χ2/2), giving

�S{χ} = 1

2γ

∫
r1r2

χ1
[
v−1

L (r12) + γρδ(r12)
]
χ2. (13)

Combining equations (1), (12) and (13), we obtain

L{vL;h}
N

= −γ vL(0)

2
− ργ

2

∫
r

vS(r) +
ργ

2

∫
r

g(r)vS(r) +
1

2ρ

∫
k

ln[1 + ργ ṽL(k)], (14)

where we have used the relation h(r) = −1 + g(r) and ṽL(k) denotes the Fourier transform of
the interaction potential vL. The maximum condition on the lower bound functional L is the
functional differentiation of L{vL;h} given by equation (14) with respect to vL

δL
δvL

∣∣∣∣
vL=v∗

L

= 0, (15)

yielding the OZ equation (4) within the RPA [18]. When we consider higher order terms
beyond the RPA, we can evaluate from equation (15) the correction potential to minus the
direct correlation function γ v∗

L = −c of the long-ranged part optimized within the RPA. It is
also to be noted that the second functional derivative of L, arising from the logarithmic term
on the right-hand side of equation (14), has a negative sign, which proves that the maximum
lower bound is located at the stationary point satisfying equation (15).

A set of our self-consistent equations is now complete by combining the OZ equation (4)
(or equation (15) in the RPA), closure relation (5) and the saddle-point equation (11), which
are the three simultaneous equations with three parameters: φ∗(r), vL(r) and h(r).

4. An alternative to the lower bound of internal correlation energy

Let us relate the best lower bound of the internal correlation energy eL per particle in the SC
limit to the optimized lower bound functional Lmax of the free energy via the inequality

eL � lim
γ→∞

γ

N

(
∂Lmax

∂γ

)
. (16)

We demonstrate below that equation (16) provides an alternative approach to the lower bound
obtained so far [4, 8–12, 16]. Since the last logarithmic term on the right-hand side of
equation (14) yields a negligible term in the SC limit, we obtain

lim
γ→∞

γ

N

(
∂Lmax

∂γ

)
= c(0)

2
− ρ

2

∫
r

[γ v(r) + c(r)] +
ρ

2

∫
r

g(r)[γ v(r) + c(r)], (17)

where use has been made of the relation γ (∂c(r)/∂γ ) = c(r) following the approximate
solutions known in the liquid state theory [9, 10, 17]. The relations (16) and (17) with the
inequality g(r) � 0 lead to

eL = c(0)

2
− ρ

2

∫
r

[γ v(r) + c(r)], (18)

5
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which is in agreement with that derived in terms of the liquid state theory [9, 10, 17]. In either
the soft mean spherical approximation (SMSA) or the hypernetted-chain (HNC) approximation
of the closure relation (5), equation (18) has been found to give the lower bound [9, 10, 17]
which is identical or quite similar to the Lieb–Narnhofer bound [4, 9, 12, 16] obtained from
the ionic sphere model, or the Onsager ball model.

The above agreement is due to the compatibility between the lower bound functional and
the correlation functional of free energy derived in the liquid state theory [19]. It is easy to
check that the lower bound functional in the RPA is identified with the correlation functional
in the SMSA. Since we have that

∫
r
g(r)[γ v(r) + c(r)] = 0 in the SMSA, it follows from

equation (14) that

Lmax

N
= c(0)

2
− ρ

2

∫
r

[γ v(r) + c(r)] +
1

2ρ

∫
k

ln[1 − ρc̃(k)] (19)

which is nothing but the SMSA functional [9, 10]. In the HNC approximation, on the
other hand, the bridge function b(r) in equation (5) is ignored, reducing to the closure
γ v + c = csr = h − ln g. In the quadratic expansion of ln g ≈ h − (h2/2) valid
for |h| � 1, the approximate HNC equation reads γ v + c = csr ≈ h2/2. We plug
the HNC equation only into the integral

∫
r
g(r)[γ v(r) + c(r)] while leaving the integral∫

r
γ v(r) + c(r) = ∫

r
h(r) − ln g(r), because the effective exclusion zone satisfying that

g(r) = 0 (or h(r) = −1), the main contribution to the latter integration, is irrelevant to the
former. We thus have that

∫
r
g(r)[γ v(r)+ c(r)] ≈ (1/2)

∫
r
h2(r)+O[h3], arriving at the HNC

functional form [10]
Lmax

N
≈ c(0)

2
− ρ

2

∫
r

[γ v(r) + c(r)] +
ρ

4

∫
r

h2(r) +
1

2ρ

∫
k

ln[1 − ρc̃(k)]. (20)

It is found from equations (19) and (20) that the present formulations based on the lower bound
variational principle are consistent with previous forms of the conventional liquid state theory
in the whole coupling range.

5. Comparison with the LMF theory

The LMF theory constitutes the potential separation, v = vS + vL, and the self-consistent
LMF equation for the effective external field incorporating the long-ranged part [7]. The
LMF simulations [7] solve the LMF equation combined with Monte Carlo simulations of
the short-ranged interaction system in the external field obtained from the LMF equation. The
mean-field equation (11) coincides with the LMF equation in the low density approximation
named mimic Poisson–Boltzmann approximation [7] when we change the variable as
φ∗ → ψ/γ .

Figure 1 compares the potential separations of the OCP at γ = 140: the LMF division that
v∗

L(r) = erf(x/1.4)/x with x = r/a [7] and ours taking two typical approximate solutions
of c(r) and csr (r); while the explicit form of the solution in the HNC approximation has
been found to be −c(r)/γ = v∗

L(r) = erf(1.08x)/x [20], the other solution −c(r) in the
SMSA has a complicated expression of the MSA type for x < 1.33 and is simply equal to
γ v(r) for x � 1.33 where we evaluated the crossover separation x = 1.33 from imposing
the continuity of the pair correlation function [10, 17]. All curves of short-ranged and long-
ranged potentials are cut off at longer and shorter distances, respectively; however, there is a
quantitative difference between those of the LMF theory and ours though the LMF separation
has been found to give better results than ours [6, 7, 20]. The deviation from the LMF division
can be reduced by considering higher order terms of A{vL} beyond the RPA, which will be
presented elsewhere.
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Figure 1. Separation of the full Coulomb potential v(x) = 1/x = a/r at γ = 140 in three ways.
While the long-ranged potentials converge to the full potential, the short-ranged remainders go to
zero within the present x-range. Our separations in two approximations, HNC approximation and
SMSA, are close to each other but deviated from the LMF division.

6. Concluding remarks

In conclusion, we have verified the applicability of the van der Waals picture to strongly
coupled OCP by using the variational principle of the lower bound free energy, a first principle
for the Coulomb potential separation which has been done in ad hoc ways: searching for
the maximum lower bound of the free energy within the RPA valid at strong coupling, we
found minus the direct correlation function as the optimal long-ranged part. Since the direct
correlation function has a finite value even at zero separation, the particles can overlap in
the long-ranged interaction systems, one of which we have treated here field theoretically.
Namely coarse graining of particle density fields, necessary for constructing statistical field
theory [11–14], is accomplished by introducing direct correlation function as a smeared long-
ranged interaction potential [12]. About the novel field regularization scheme, systematic
discussions such as the non-perturbative renormalization theory [21] are to be explored. It has
also been demonstrated in section 4 that the present variational theory is consistent with the
conventional liquid state theory, implying that our lower bound approach applies not only to
the OCP but also to any multi-scale systems including inhomogeneous counterion systems in
the SC regime [15, 22–24].
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